Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.410
Filtrar
1.
Eur Rev Med Pharmacol Sci ; 28(8): 3135-3143, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38708472

RESUMEN

OBJECTIVE: Benzene is one of the major carcinogenic factors that can affect liver, kidneys, and lungs. Chronic inhalation of benzene vapor by petrol stations workers has been shown to have an impact on hematological parameters; thus, the present study aimed to investigate the effect of benzene exposure on petrol station workers. SUBJECTS AND METHODS: The study involved 99 participants, 50 of whom have been exposed to benzene and 49 of whom have not (control). A 5 ml blood sample in an ethylenediaminetetraacetic acid (EDTA) anticoagulant tube was collected from each subject, and a complete blood count test was used to test hematological parameters. RESULTS: The current study showed a significant decrease in red blood cells, packed cell volume, and hemoglobin in the exposed group compared to the control group. However, the amount of white blood cells was significantly increased (p < 0.0001) in the exposed group compared to the control group. Notably, there was no significant difference in platelet counts between the two groups. In terms of exposure time, subjects who have been exposed to benzene for more than a year and fewer than 10 years showed a significant decrease (p < 0.05) in RBCs indices and a significant increase (p < 0.0001) in WBCs compared to those in the control group CONCLUSIONS: Thus, the findings indicated that significant differences in hematological parameters were found in workers who were exposed to benzene compared to those who had not been exposed.


Asunto(s)
Benceno , Exposición Profesional , Humanos , Exposición Profesional/efectos adversos , Benceno/toxicidad , Adulto , Masculino , Recuento de Células Sanguíneas , Hemoglobinas/análisis , Hemoglobinas/metabolismo , Persona de Mediana Edad
2.
Biomed Environ Sci ; 37(4): 341-353, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38727157

RESUMEN

Objective: Hydroquinone (HQ), one of the phenolic metabolites of benzene, is widely recognized as an important participant in benzene-induced hematotoxicity. However, there are few relevant proteomics in HQ-induced hematotoxicity and the mechanism hasn't been fully understood yet. Methods: In this study, we treated K562 cells with 40 µmol/L HQ for 72 h, examined and validated protein expression changes by Label-free proteomic analysis and Parallel reaction monitoring (PRM), and performed bioinformatics analysis to identify interaction networks. Results: One hundred and eighty-seven upregulated differentially expressed proteins (DEPs) and 279 downregulated DEPs were identified in HQ-exposed K562 cells, which were involved in neutrophil-mediated immunity, blood microparticle, and other GO terms, as well as the lysosome, metabolic, cell cycle, and cellular senescence-related pathways. Focusing on the 23 DEGs and 5 DEPs in erythroid differentiation-related pathways, we constructed the network of protein interactions and determined 6 DEPs (STAT1, STAT3, CASP3, KIT, STAT5B, and VEGFA) as main hub proteins with the most interactions, among which STATs made a central impact and may be potential biomarkers of HQ-induced hematotoxicity. Conclusion: Our work reinforced the use of proteomics and bioinformatic approaches to advance knowledge on molecular mechanisms of HQ-induced hematotoxicity at the protein level and provide a valuable basis for further clarification.


Asunto(s)
Benceno , Hemolíticos , Proteoma , Proteoma/metabolismo , Proteómica , Benceno/toxicidad , Células K562 , Humanos , Pruebas de Toxicidad/métodos , Hemolíticos/toxicidad
3.
Environ Int ; 186: 108645, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38615541

RESUMEN

Benzene is a broadly used industrial chemicals which causes various hematologic abnormalities in human. Altered DNA methylation has been proposed as epigenetic biomarkers in health risk evaluation of benzene exposure, yet the role of methylation at specific CpG sites in predicting hematological effects remains unclear. In this study, we recruited 120 low-level benzene-exposed and 101 control male workers from a petrochemical factory in Maoming City, Guangdong Province, China. Urinary S-phenylmercapturic acid (SPMA) in benzene-exposed workers was 3.40-fold higher than that in control workers (P < 0.001). Benzene-induced hematotoxicity was characterized by reduced white blood cells counts and nuclear division index (NDI), along with an increased DNA damage and urinary 8-hydroxy-2'-deoxyguanosine (all P < 0.05). Methylation levels of TRIM36, MGMT and RASSF1a genes in peripheral blood lymphocytes (PBLCs) were quantified by pyrosequencing. CpG site 6 of TRIM36, CpG site 2, 4, 6 of RASSF1a and CpG site 1, 3 of MGMT methylation were recognized as hot CpG sites due to a strong correlation with both internal exposure and hematological effects. Notably, integrating hot CpG sites methylation of multiple genes reveal a higher efficiency in prediction of integrative damage compared to individual genes at hot CpG sites. The negative dose-response relationship between the combined methylation of hot CpG sites in three genes and integrative damage enabled the classification of benzene-exposed individuals into high-risk or low-risk groups using the median cut-off value of the integrative index. Subsequently, a prediction model for integrative damage in benzene-exposed populations was built based on the methylation status of the identified hot CpG sites in the three genes. Taken together, these findings provide a novel insight into application prospect of specific CpG site methylation as epi-biomarkers for health risk assessment of environmental pollutants.


Asunto(s)
Acetilcisteína/análogos & derivados , Benceno , Islas de CpG , Metilación de ADN , Exposición Profesional , Humanos , Metilación de ADN/efectos de los fármacos , Masculino , Exposición Profesional/efectos adversos , Benceno/toxicidad , Adulto , China , Daño del ADN , Persona de Mediana Edad , Biomarcadores/orina , Acetilcisteína/orina , Proteínas Supresoras de Tumor/genética , Enzimas Reparadoras del ADN/genética
4.
Ecotoxicol Environ Saf ; 276: 116302, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608381

RESUMEN

Benzene is a known contributor to human leukaemia through its toxic effects on bone marrow cells, and epigenetic modification is believed to be a potential mechanism underlying benzene pathogenesis. However, the specific roles of N6-methyladenosine (m6A), a newly discovered RNA post-transcriptional modification, in benzene-induced hematotoxicity remain unclear. In this study, we identified self-renewing malignant proliferating cells in the bone marrow of benzene-exposed mice through in vivo bone marrow transplantation experiments and Competitive Repopulation Assay. Subsequent analysis using whole transcriptome sequencing and RNA m6A methylation sequencing revealed a significant upregulation of RNA m6A modification levels in the benzene-exposed group. Moreover, RNA methyltransferase METTL14, known as a pivotal player in m6A modification, was found to be aberrantly overexpressed in Lin-Sca-1+c-Kit+ (LSK) cells of benzene-exposed mice. Further analysis based on the GEO database showed a positive correlation between the expression of METTL14, mTOR, and GFI and benzene exposure dose. In vitro cellular experiments, employing experiments such as western blot, q-PCR, m6A RIP, and CLIP, validated the regulatory role of METTL14 on mTOR and GFI1. Mechanistically, continuous damage inflicted by benzene exposure on bone marrow cells led to the overexpression of METTL14 in LSK cells, which, in turn, increased m6A modification on the target genes' (mTOR and GFI1) RNA. This upregulation of target gene expression activated signalling pathways such as mTOR-AKT, ultimately resulting in malignant proliferation of bone marrow cells. In conclusion, this study offers insights into potential early targets for benzene-induced haematologic malignant diseases and provides novel perspectives for more targeted preventive and therapeutic strategies.


Asunto(s)
Adenosina/análogos & derivados , Benceno , Metiltransferasas , Benceno/toxicidad , Animales , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/genética , Células Mieloides/efectos de los fármacos , Células Mieloides/patología , Ratones Endogámicos C57BL , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Masculino
5.
Toxicol Ind Health ; 40(6): 337-351, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38597775

RESUMEN

Gasoline station attendants are exposed to numerous chemicals that might have genotoxic and carcinogenic potential, such as benzene in fuel vapor and particulate matter and polycyclic aromatic hydrocarbons in vehicle exhaust emission. According to IARC, benzene and diesel particulates are Group 1 human carcinogens, and gasoline has been classified as Group 2A "possibly carcinogenic to humans." At gas stations, self-service is not implemented in Turkey; fuel-filling service is provided entirely by employees, and therefore they are exposed to those chemicals in the workplace during all working hours. Genetic monitoring of workers with occupational exposure to possible genotoxic agents allows early detection of cancer. We aimed to investigate the genotoxic damage due to exposures in gasoline station attendants in Turkey. Genotoxicity was evaluated by the Comet, chromosomal aberration, and cytokinesis-block micronucleus assays in peripheral blood lymphocytes. Gasoline station attendants (n = 53) had higher tail length, tail intensity, and tail moment values than controls (n = 61). In gasoline station attendants (n = 46), the frequencies of chromatid gaps, chromosome gaps, and total aberrations were higher compared with controls (n = 59). Increased frequencies of micronuclei and nucleoplasmic bridges were determined in gasoline station attendants (n = 47) compared with controls (n = 40). Factors such as age, duration of working, and smoking did not have any significant impact on genotoxic endpoints. Only exposure increased genotoxic damage in gasoline station attendants independently from demographic and clinical characteristics. Occupational exposure-related genotoxicity risk may increase in gasoline station attendants who are chronically exposed to gasoline and various chemicals in vehicle exhaust emissions.


Asunto(s)
Aberraciones Cromosómicas , Daño del ADN , Gasolina , Pruebas de Micronúcleos , Exposición Profesional , Humanos , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Gasolina/toxicidad , Adulto , Masculino , Turquía , Aberraciones Cromosómicas/inducido químicamente , Daño del ADN/efectos de los fármacos , Persona de Mediana Edad , Contaminantes Ocupacionales del Aire/análisis , Contaminantes Ocupacionales del Aire/toxicidad , Ensayo Cometa , Biomarcadores , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Linfocitos/efectos de los fármacos , Femenino , Mutágenos/toxicidad , Benceno/toxicidad , Benceno/análisis
6.
Artículo en Inglés | MEDLINE | ID: mdl-38541258

RESUMEN

African American women in the United States have a high risk of adverse pregnancy outcomes. DNA methylation is a potential mechanism by which exposure to BTEX (benzene, toluene, ethylbenzene, and xylenes) may cause adverse pregnancy outcomes. Data are from the Maternal Stress Study, which recruited African American women in the second trimester of pregnancy from February 2009 to June 2010. DNA methylation was measured in archived DNA from venous blood collected in the second trimester. Trimester-specific exposure to airshed BTEX was estimated using maternal self-reported addresses and geospatial models of ambient air pollution developed as part of the Geospatial Determinants of Health Outcomes Consortium. Among the 64 women with exposure and outcome data available, 46 differentially methylated regions (DMRs) were associated with BTEX exposure (FDR adjusted p-value < 0.05) using a DMR-based epigenome-wide association study approach. Overall, 89% of DMRs consistently exhibited hypomethylation with increasing BTEX exposure. Biological pathway analysis identified 11 enriched pathways, with the top 3 involving gamma-aminobutyric acid receptor signaling, oxytocin in brain signaling, and the gustation pathway. These findings highlight the potential impact of BTEX on DNA methylation in pregnant women.


Asunto(s)
Contaminantes Atmosféricos , Benceno , Negro o Afroamericano , Metilación de ADN , Femenino , Humanos , Embarazo , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Benceno/análisis , Benceno/toxicidad , Derivados del Benceno/análisis , Derivados del Benceno/toxicidad , Negro o Afroamericano/genética , Monitoreo del Ambiente , Tolueno/toxicidad , Tolueno/análisis , Xilenos/toxicidad , Xilenos/análisis
7.
Gut Microbes ; 16(1): 2323227, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38436067

RESUMEN

Due to the annual increase in its production and consumption in occupational environments, the adverse blood outcomes caused by benzene are of concern. However, the mechanism of benzene-induced hematopoietic damage remains elusive. Here, we report that benzene exposure causes hematopoietic damage in a dose-dependent manner and is associated with disturbances in gut microbiota-long chain fatty acids (LCFAs)-inflammation axis. C57BL/6J mice exposed to benzene for 45 days were found to have a significant reduction in whole blood cells and the suppression of hematopoiesis, an increase in Bacteroides acidifaciens and a decrease in Lactobacillus murinus. Recipient mice transplanted with fecal microbiota from benzene-exposed mice showed potential for hematopoietic disruption, LCFAs, and interleukin-5 (IL-5) elevation. Abnormally elevated plasma LCFAs, especially palmitoleic acid (POA) exacerbated benzene-induced immune-inflammation and hematopoietic damage via carnitine palmitoyltransferase 2 (CPT2)-mediated disorder of fatty acid oxidation. Notably, oral administration of probiotics protects the mice against benzene-induced hematopoietic toxicity. In summary, our data reveal that the gut microbiota-POA-IL-5 axis is engaged in benzene-induced hematopoietic damage. Probiotics might be a promising candidate to prevent hematopoietic abnormalities from benzene exposure.


Asunto(s)
Ácidos Grasos Monoinsaturados , Microbioma Gastrointestinal , Interleucina-5 , Animales , Ratones , Ratones Endogámicos C57BL , Benceno/toxicidad , Ácidos Grasos , Inflamación
8.
Toxicology ; 503: 153758, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367942

RESUMEN

Benzene exposure leads to hematotoxicity, and epigenetic modification is considered to be a potential mechanism of benzene pathogenesis. As a newly discovered post-transcriptional modification, the roles of N6-methyladenosine (m6A) in benzene hematotoxicity are still unclear. m6A can only exert its gene regulatory function after being recognized by m6A reading proteins. In this study, we found that the expression of m6A reader IGF2BP1 decreased in benzene poisoning workers and in 20 µM benzene metabolite 1,4-BQ-treated AHH-1 cells. Further overexpression of IGF2BP1 in mice alleviated 50 ppm benzene-induced hematopoietic damage, suggesting that IGF2BP1 plays a critical role in benzene hematotoxicity. Next, we examined transcriptome-wide m6A methylation in vitro to search for target genes of IGF2BP1. We found that benzene metabolite 1,4-BQ treatment altered the m6A methylation levels of various genes. The comprehensive analysis of mRNA expression and m6A methylation uncovered that the hypomethylated Ribosomal Protein L36 (RPL36) and its consequent reduced expression impaired cell proliferation. Mechanically, m6A modification reduced RNA stability to down-regulate RPL36 expression. Moreover, overexpression of IGF2BP1 relieved RPL36 reduction and cell proliferation inhibition caused by benzene in vitro and in vivo by directly binding with RPL36 mRNA. In conclusion, the m6A reader IGF2BP1 attenuates the stability of RPL36 and cell proliferation to mediate benzene hematotoxicity by recognizing m6A modification. IGF2BP1 and RPL36 may be key molecules and potential therapeutic targets for benzene hematotoxicity.


Asunto(s)
Adenina/análogos & derivados , Benceno , Ratones , Animales , Benceno/toxicidad , Metilación , ARN Mensajero/metabolismo , Biomarcadores/metabolismo , Proliferación Celular
10.
Artículo en Inglés | MEDLINE | ID: mdl-38397694

RESUMEN

Lung cancer is a leading cause of death with nearly 1.8 million deaths estimated worldwide in 2020. Although benzene is classified as a human carcinogen (Group 1) on the basis of its association with acute myeloid/non-lymphocytic leukaemia, there is still limited evidence that it may influence lung cancer risk. This study examined the potential link between benzene exposure and risk of lung cancer using a systematic review of epidemiological studies and meta-analysis. We searched through PubMed, Web of Science and Scopus databases up to 10 February 2023 to identify all articles on the association between benzene exposure and lung cancer (incidence or prevalence) and/or mortality. We extracted the risk estimates of the highest and the lowest reported categories of benzene exposure and conducted a meta-analysis using a random-effects model. Heterogeneity and publication bias were analysed using an I2 test and funnel plots asymmetry, respectively. Twenty-one studies were included in the final analysis, with a total of 10,750 lung cancer cases and 2899 lung cancer deaths. Overall, risk estimates of lung cancer prevalence and mortality in association with benzene exposure were 1.20 (n = 14; 95% CI 1.05-1.37) and 1.15 (n = 13; 95% CI 1.02-1.30), respectively. In all cases, heterogeneity was quite large, while no significant publication bias was observed. When only studies that adjusted for smoking habit were selected, the risk for lung cancer increased by up to 34% (n = 9; 95% CI 1.10-1.64). Our data, which show a strong association between benzene exposure and lung cancer risk, may have important public health implications. However, further studies are needed to identify the lung cancer risk associated with benzene exposure considering different smoking conditions.


Asunto(s)
Leucemia Mieloide Aguda , Neoplasias Pulmonares , Exposición Profesional , Humanos , Benceno/toxicidad , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/epidemiología , Riesgo
11.
Sci Rep ; 14(1): 3873, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365800

RESUMEN

This study aimed to examine the impacts of single and multiple air pollutants (AP) on the severity of breast cancer (BC). Data of 1148 diagnosed BC cases (2008-2016) were obtained from the Cancer Research Center and private oncologist offices in Tehran, Iran. Ambient PM10, SO2, NO, NO2, NOX, benzene, toluene, ethylbenzene, m-xylene, p-xylene, o-xylene, and BTEX data were obtained from previously developed land use regression models. Associations between pollutants and stage of BC were assessed by multinomial logistic regression models. An increase of 10 µg/m3 in ethylbenzene, o-xylene, m-xylene, and 10 ppb of NO corresponded to 10.41 (95% CI 1.32-82.41), 4.07 (1.46-11.33), 2.89 (1.08-7.73) and 1.08 (1.00-1.15) increase in the odds of stage I versus non-invasive BC, respectively. Benzene (OR, odds ratio = 1.16, 95% CI 1.01-1.33) and o-xylene (OR = 1.18, 1.02-1.38) were associated with increased odds of incidence of BC stages III & IV versus non-invasive stages. BC stage I and stage III&IV in women living in low SES areas was associated with significantly higher levels of benzene, ethylbenzene, o-xylene, and m-xylene. The highest multiple-air-pollutants quartile was associated with a higher odds of stage I BC (OR = 3.16) in patients under 50 years old. This study provides evidence that exposure to AP is associated with increased BC stage at diagnosis, especially under premenopause age.


Asunto(s)
Contaminantes Atmosféricos , Neoplasias de la Mama , Contaminantes Ambientales , Xilenos , Humanos , Femenino , Persona de Mediana Edad , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Benceno/toxicidad , Benceno/análisis , Irán/epidemiología , Neoplasias de la Mama/inducido químicamente , Neoplasias de la Mama/epidemiología , Derivados del Benceno/análisis , Tolueno/análisis , Monitoreo del Ambiente
12.
Environ Int ; 184: 108493, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38350257

RESUMEN

Defective erythropoiesis is one of the causes of anemia and leukemia. However, the mechanisms underlying defective erythropoiesis under a low-dose environment of benzene are poorly understood. In the present study, multiple omics (transcriptomics and metabolomics) and methods from epidemiology to experimental biology (e.g., benzene-induced (WT and HIF-1α + ) mouse, hiPSC-derived HSPCs) were used. Here, we showed that erythropoiesis is more easily impacted than other blood cells, and the process is reversible, which involves HIF-1 and NF-kB signaling pathways in low-level benzene exposure workers. Decreased HIF-1α expression in benzene-induced mouse bone marrow resulted in DNA damage, senescence, and apoptosis in BMCs and HSCs, causing disturbances in iron homeostasis and erythropoiesis. We further revealed that HIF-1α mediates CCL3/macrophage-related immunosurveillance against benzene-induced senescent and damaged cells and contributes to iron homeostasis. Mechanistically, we showed that m6A modification is essential in this process. Benzene-induced depletion of m6A promotes the mRNA stability of gene NFKBIA and regulates the NF-κB/CCL3 pathway, which is regulated by HIF-1α/METTL3/YTHDF2. Overall, our results identified an unidentified role for HIF-1α, m6A, and the NF-kB signaling machinery in erythroid progenitor cells, suggesting that HIF-1α/METTL3/YTHDF2-m6A/NF-κB/CCL3 axis may be a potential prevention and therapeutic target for chronic exposure of humans to benzene-associated anemia and leukemia.


Asunto(s)
Anemia , Leucemia , Humanos , Animales , Ratones , FN-kappa B/metabolismo , Benceno/toxicidad , Monitorización Inmunológica , Hierro , Metiltransferasas
13.
Int J Occup Saf Ergon ; 30(1): 9-19, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36502281

RESUMEN

Objectives. The present study aimed to assess whether occupational exposure to low concentrations of benzene, toluene, ethylbenzene and xylene (BTEX) is associated with color vision impairment. Methods. We queried PubMed, Scopus, Embase, Web of Science and ProQuest as the main databases, as well as gray literature such as Google Scholar. A random-effects model was used to assess relative risk. A funnel plot was created to assess publication bias. Meta-regression analysis was applied to identify variables that explain the between-study variation in the reported risk estimate. Results. An overall standardized mean difference of 0.529 (95% confidence interval [0.269, 0.788]; p < 0.0001) was obtained in the random-effects model, which corresponded to a medium-size effect. Duration and the levels of exposure to benzene, toluene and xylene were the significant predictors of the magnitude of the combined risk estimate. Chronic exposure to low levels of BTEX was associated with dyschromatopsia determined by the color confusion index. Conclusions. The impairments can occur even at exposures lower than the occupational exposure limits of BTEX. However, there are several flaws in the determination of workers' exposure, which did not allow to establish how low a level of these chemicals can cause color vision impairment.


Asunto(s)
Derivados del Benceno , Exposición Profesional , Tolueno , Humanos , Tolueno/análisis , Benceno/toxicidad , Benceno/análisis , Xilenos/análisis , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Monitoreo del Ambiente/métodos
15.
Environ Res ; 243: 117836, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38065394

RESUMEN

Benzene is a commonly used industrial chemical that is a significant environmental pollutant. Occupational health specialists and industrial toxicologists are concerned with determining the exact amount of exposure to chemicals in the workplace. There are two main approaches to assess chemical exposure; air monitoring and biological monitoring. Air monitoring has limitations, which biological monitoring overcomes and could be used as a supplement to it. However, there are several factors that influence biological monitoring results. It would be possible to assess exposure more accurately if these factors were taken into account. This study aimed to review published papers for recognizing and discussing parameters that could affect benzene biological monitoring. Two types of effects can be distinguished: positive and negative effects. Factors causing positive effects will increase the metabolite concentration in urine more than expected. Furthermore, the parameters that decrease the urinary metabolite level were referred to as false negatives. From the papers, sixteen influential factors were extracted that might affect benzene biological monitoring results. Identified factors were clarified in terms of their nature and mechanism of action. It is also important to note that some factors influence the quantity and quality of the influence of other factors. As a result of this study, a decision-making protocol was developed for interpreting the final results of benzene biological monitoring.


Asunto(s)
Benceno , Exposición Profesional , Benceno/toxicidad , Benceno/análisis , Monitoreo del Ambiente , Monitoreo Biológico , Industrias , Biomarcadores/orina
16.
Environ Toxicol ; 39(3): 1099-1106, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37818967

RESUMEN

Benzene exposure inhibits the hematopoietic system and leads to the occurrence of various types of leukemia. However, the mechanism underlying the hematotoxicity of benzene is still largely unclear. Emerging evidence has shown that exosomes are involved in toxic mechanisms of benzene. To understand the effect of 1,4-benzoquinone (PBQ; an active metabolite of benzene in bone marrow) on the exosomal release characteristics and role of exosomal secretion in PBQ-induced cytotoxicity. Exosomes were isolated from PBQ-treated HL-60 cells, purified by ultracentrifugation, and verified by transmission electron microscopy, nanoparticle tracking analysis and the presence of specific biomarkers. Our results showed that PBQ increased exosomal secretion in a dose-dependent manner, reaching a peak in 3 h at 10 µM PBQ treatment and then slowly decreasing in HL-60 cells. The exosomes contained miRNAs, which have been reported to be associated with benzene exposure or benzene poisoning. In particular, mir-34a-3p and mir-34A-5p were enriched in exosomes derived from PBQ-treated cells. In addition, the inhibition of exosomal release by GW4869 (an inhibitor of exosomal release) exacerbated PBQ-induced cytotoxicity, including increased intracellular reactive oxygen species levels, decreased mitochondrial membrane potential, and increased the apoptosis rate. Our findings illustrated that exosomes secretion plays an important role in antagonizing PBQ-induced cytotoxicity and maintaining cell homeostasis.


Asunto(s)
Benceno , MicroARNs , Humanos , Benceno/toxicidad , MicroARNs/metabolismo , Apoptosis , Células HL-60 , Benzoquinonas/farmacología
17.
Am J Respir Crit Care Med ; 209(2): 185-196, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37812782

RESUMEN

Rationale: Benzene has been classified as carcinogenic to humans, but there is limited evidence linking benzene exposure to lung cancer. Objectives: We aimed to examine the relationship between occupational benzene exposure and lung cancer. Methods: Subjects from 14 case-control studies across Europe and Canada were pooled. We used a quantitative job-exposure matrix to estimate benzene exposure. Logistic regression models assessed lung cancer risk across different exposure indices. We adjusted for smoking and five main occupational lung carcinogens and stratified analyses by smoking status and lung cancer subtypes. Measurements and Main Results: Analyses included 28,048 subjects (12,329 cases, 15,719 control subjects). Lung cancer odds ratios ranged from 1.12 (95% confidence interval, 1.03-1.22) to 1.32 (95% confidence interval, 1.18-1.48) (Ptrend = 0.002) for groups with the lowest and highest cumulative occupational exposures, respectively, compared with unexposed subjects. We observed an increasing trend of lung cancer with longer duration of exposure (Ptrend < 0.001) and a decreasing trend with longer time since last exposure (Ptrend = 0.02). These effects were seen for all lung cancer subtypes, regardless of smoking status, and were not influenced by specific occupational groups, exposures, or studies. Conclusions: We found consistent and robust associations between different dimensions of occupational benzene exposure and lung cancer after adjusting for smoking and main occupational lung carcinogens. These associations were observed across different subgroups, including nonsmokers. Our findings support the hypothesis that occupational benzene exposure increases the risk of developing lung cancer. Consequently, there is a need to revisit published epidemiological and molecular data on the pulmonary carcinogenicity of benzene.


Asunto(s)
Neoplasias Pulmonares , Enfermedades Profesionales , Exposición Profesional , Humanos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/epidemiología , Benceno/toxicidad , Exposición Profesional/efectos adversos , Carcinógenos , Pulmón , Estudios de Casos y Controles , Enfermedades Profesionales/inducido químicamente , Enfermedades Profesionales/epidemiología
18.
Toxicol Ind Health ; 40(1-2): 33-40, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37936286

RESUMEN

Benzene, toluene, ethyl benzene, and xylene (BTEX) are prevalent pollutants in shoe industry-related workplaces. The aim of this study was to assess exposure to BTEX and their carcinogenic and non-carcinogenic risks in shoe-industry-related workplaces. This study was carried out at different shoe manufactures, small shoe workshop units, shoe markets, and shoe stores in Tabriz, Iran in 2021. Personal inhalation exposure to BTEX was measured using the National Institute for Occupational Safety and Health (NIOSH) 1501 method. Carcinogenic and non-carcinogenic risks due to inhalation exposure to BTEX were estimated by United States Environmental Protection Agency (U.S. EPA) method based on Mont Carlo simulation. Results showed that the concentrations of benzene and toluene were higher than the threshold limit value (TLV) in both gluing and non-gluing units of shoe manufactures. The total carcinogenic risk (TCR) due to exposure to benzene and ethyl benzene was considerable in all shoe industry-related workplaces. Also, the hazard index (HI) as a non-carcinogenic index was higher than standard levels in all shoe industry-related workplaces. Therefore, shoe industry-related workers are at cancer and non-cancer risks due to exposure to BTEX. Prevention measures need to be implemented to reduce the concentration of BTEX in shoe industry-related workplaces.


Asunto(s)
Contaminantes Atmosféricos , Benceno , Humanos , Benceno/toxicidad , Benceno/análisis , Xilenos/toxicidad , Xilenos/análisis , Tolueno/toxicidad , Tolueno/análisis , Zapatos , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Derivados del Benceno/toxicidad , Derivados del Benceno/análisis , Carcinógenos , Lugar de Trabajo , Carcinogénesis , Medición de Riesgo
19.
Arch Toxicol ; 98(2): 365-374, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142431

RESUMEN

Several recent reports indicate health hazards for workers with below occupational limit exposure to benzene (BZ). Our updated review indicates that such low exposures induced traditional as well as novel toxicity/genotoxicity, e.g., increased mitochondria copy numbers, prolongation of telomeres, impairment of DNA damage repair response (DDRR), perturbations of expression in non-coding RNAs, and epigenetic changes. These abnormalities were associated with alterations of gene expression and cellular signaling pathways which affected hematopoietic cell development, expression of apoptosis, autophagy, etc. The overarching mechanisms for induction of health risk are impaired DDRR, inhibition of tumor suppressor genes, and changes of MDM2-p53 axis activities that contribute to perturbed control for cancer pathways. Evaluation of the unusual dose-responses to BZ exposure indicates cellular over-compensation and reprogramming to overcome toxicity and to promote survival. However, these abnormal mechanisms also promote the induction of leukemia. Further investigations indicate that the current exposure limits for workers to BZ are unacceptable. Based on these studies, the new exposure limits should be less than 0.07 ppm rather than the current 1 ppm. This review also emphasizes the need to conduct appropriate bioassays, and to provide more reliable decisions on health hazards as well as on exposure limits for workers. In addition, it is important to use scientific data to provide significantly improved risk assessment, i.e., shifting from a population- to an individual-based risk assessment.


Asunto(s)
Benceno , Exposición Profesional , Humanos , Benceno/toxicidad , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Daño del ADN , Reparación del ADN , Medición de Riesgo
20.
Int J Mol Sci ; 24(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38003401

RESUMEN

Urban environments are afflicted by mixtures of anthropogenic volatile organic compounds (VOCs). VOC sources that drive human exposure include vehicle exhaust, industrial emissions, and oil spillage. The highly volatile VOC benzene has been linked to adverse health outcomes. However, few studies have focused on the later-in-life effects of low-level benzene exposure during the susceptible window of early development. Transcriptomic responses during embryogenesis have potential long-term consequences at levels equal to or lower than 1 ppm, therefore justifying the analysis of adult zebrafish that were exposed during early development. Previously, we identified transcriptomic alteration following controlled VOC exposures to 0.1 or 1 ppm benzene during the first five days of embryogenesis using a zebrafish model. In this study, we evaluated the adult-onset transcriptomic responses to this low-level benzene embryogenesis exposure (n = 20/treatment). We identified key genes, including col1a2 and evi5b, that were differentially expressed in adult zebrafish in both concentrations. Some DEGs overlapped at the larval and adult stages, specifically nfkbiaa, mecr, and reep1. The observed transcriptomic results suggest dose- and sex-dependent changes, with the highest impact of benzene exposure to be on cancer outcomes, endocrine system disorders, reproductive success, neurodevelopment, neurological disease, and associated pathways. Due to molecular pathways being highly conserved between zebrafish and mammals, developmentally exposed adult zebrafish transcriptomics is an important endpoint for providing insight into the long term-effects of VOCs on human health and disease.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Animales , Adulto , Humanos , Compuestos Orgánicos Volátiles/toxicidad , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/efectos adversos , Pez Cebra/genética , Benceno/toxicidad , Transcriptoma , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA